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Abstract. This article describes the second order closure progress that was made to calculate compressible
homogeneous shear flow with significant compressibility. Several DNS results show that compressibility has
an important effect on the pressure-strain correlation. The term recognized as the principal responsible
for the change in the magnitude of Reynolds-stress anisotropies. Thus, the pressure-strain incompressible
models do not correctly predict compressible turbulence at high-speed shear flow. A method of including
compressibility effects in the pressure-strain correlation is the subject of the present study. The concept
of the growth rate of turbulent kinetic energy can be used to construct a compressible correction to the
Launder, Reece and Rodi model for the pressure-strain correlation. This correction concerns essentially
the C1, C3 and C4 coefficients which become in a compressible turbulence situation a function of the
turbulent Mach number. The application of the new model shows good agreement with DNS results of
Sarkar for cases A1, A2 and A3. These cases correspond to a moderate mean shear rate, so that nonlinear
effects are important.

PACS. 47.27.Eq Turbulence simulation and modeling – 47.27.Gs Isotropic turbulence; homogeneous tur-
bulence

1 Introduction

Compressible turbulence modeling is an essential element
for calculations of many problems of practical engineer-
ing interest, such as combustion, environment and aero-
dynamics. The direct extension of incompressible models
were used in the calculation of turbulent flows at moderate
turbulent Mach number. This extension should be consid-
erable success in the calculations, even if the turbulent
Mach number was smaller. However, it failed to predict
correctly the reduced growth rate of the turbulent kinetic
energy when the compressibility was predominant [1–5].
This extension was observed in the modeling of two di-
latational terms arise due to compressibility appearing in
the turbulent kinetic energy transport equation.

Sarkar et al. [6] have proposed a model for the dilata-
tional part of the total dissipation due to the divergence of
velocity and another for the pressure dilatation [7] which
represents a reversible transfer of energy between kinetic
and internal energy. These algebraic models are obtained
from an asymptotic analysis that is formally valid for small
turbulent Mach number. Zeman [8] proposes that the di-
latational part of the total dissipation becomes progres-
sively important as the turbulent Mach number increases
due to the appearance of eddy shocklets; he models dilata-
tional dissipation as proportional to the solenoidal dissi-
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pation and a function of the turbulent Mach number. The
studies of Speziale et al. [5] and Adumitroaie et al. [9]
have demonstrated that the dilatational effects on homo-
geneous shear flow are, in fact, much smaller than one
believes; consequently, they do not appear to be reflecting
the correct physics of the reduced growth rate. It appears
from DNS results [10,11], that the phenomenon responsi-
ble for the reduced growth rate is due to the reduction in
the Reynolds shear stress anisotropy. This effect is thought
to be due to the effects of compressibility on the pressure-
strain correlation. This establishes the motivation of the
present work. The main theme of this paper is to extend
the incompressible Launder, Reece and Rodi model [12]
for the pressure-strain correlation to compressible turbu-
lent flow, in which the C1, C3 and C4 coefficients become
dependent on the turbulent Mach number. The validity
of the proposed model has been tested for four selected
cases from the DNS results of Sarkar [10] for compressible
homogeneous shear flow.

The organization of this paper is as follows: In Sec-
tion 2, the Favre-average forms of the governing equa-
tions are given. The development of closures for the ef-
fects of compressibility in the Reynolds stress equations
is described in Section 3. An expression of the temporal
growth rate of the kinetic energy can be used to construct
a compressible correction to the L.R.R model [12]. The
results are discussed in Section 4.
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2 Governing equations

In this section, we focus on the derivation of the evolution
equations for the turbulent quantities. To this end, we first
recall the Navier-Stokes equations for compressible fluids.

∂ρ

∂t
+

∂(ρui)
∂xj

= 0 (1)

∂(ρui)
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂σij

∂xj
, (2)

where:

σij = µ

(
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∂xi
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3
∂ul

∂xl
δij

)
,

is the viscous stress tensor.
In these equations, the ui are the components of the

velocity, p, ρ, and µ are respectively the pressure, the den-
sity and the molecular viscosity. Any flow variable f can
be decomposed into ensemble mean and fluctuating parts
as follows:

f = f + f
′
, (3)

where, for homogeneous turbulence, the mean f can be
taken to be a spatial average or, for a statistically steady
turbulence, it can be taken to be a time average. An alter-
native decomposition based on a mass-weighted averages
can be used wherein:

f = f̃ + f
′′
, (4)

given that f̃ is the Favre-average which is defined as
f̃ = ρf

ρ . As in the traditional studies of compressible
Reynolds stress, both (3) and (4) will be used. A direct
averaging of equations (1–2) yields the mean continuity
and momentum equations which are as follows:

∂ρ

∂t
+

∂(ρũi)
∂xj

= 0 (5)
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+
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. (6)

In order to achieve closure, we need a model for the
Favre-average Reynolds stress ũ

′′
i u

′′
j . For homogeneous

shear flow problem where the mean density and the gradi-
ent of the mean velocity are constant, the Favre-averaged
Reynolds stress tensor is a solution of the transport equa-
tions:

dũ
′′
i u

′′
j

dt
= −ũ

′′
i v′′Sδj1 − ũ

′′
j v′′Sδi1 +

φij

ρ

+
2
3

(
p′d′

ρ
− ε

)
δij , (7)

where S, φij , ε and p′d′ are respectively the mean shear
rate, the deviatoric part of the pressure-gradient veloc-
ity correlation, the total dissipation rate tensor and the
pressure-dilatation correlation.

The contraction of (7) yields the turbulent kinetic en-
ergy equation:

dk

dt
= P − ε +

p′d′

ρ
, (8)

where k = 1
2 ũ

′′
i u

′′
i is the Favre-averaged turbulent ki-

netic energy and P = −ũ′′v′′S is the turbulence produc-
tion. Sarkar et al. [6] and Zeman [8] decompose the tur-
bulent dissipation into solenoidal and dilatational parts
as follows: ε = εs + εc, where for homogeneous turbu-
lence ρεs = µω

′
iω

′
i, ρεc = 4

3µ(u′
i,i)2 are respectively, the

solenoidal and compressible parts of the turbulent dissipa-
tion rate given that ω

′
i is the fluctuating vorticity. εs repre-

sents the turbulent dissipation arising from the traditional
energy cascade which is solenoidal, εc represents the tur-
bulent dissipation arising from compressible modes. The
transport equation for the solenoidal dissipation is of the
form [13]:

dεs

dt
= Cε1

εs

k
P − Cε2

εs
2

k
. (9)

In compressible homogeneous shear flow, this equation
is identical to its incompressible counterpart. In (9) Cε1 ,
Cε2 are constants (Cε1 = 1.44, Cε2 = 1.83).

Hence, a full Reynolds stress closure is achieved in
compressible turbulence if models are provided for:

(i) the pressure-dilatation correlation p′d′

(ii) the compressible dissipation εc

(iii) the deviatoric part of the pressure-strain correlation.

For the pressure-dilatation and the compressible dis-
sipation, we have retained models of Sarkar [6,7]. These
models are algebraic and take in homogeneous shear flow
the following simple forms:

p′d′ = −ρα1PMt + α2ρM2
t εs (10)

εc = αM2
t εs (11)

where α, α1, α2 are constants that take on the values
of 0.5, 0.15 and 0.2 respectively. Mt denotes the turbulent
Mach number that is Mt = u

c , is a solution of the transport
equation [5]:

dMt

dt
= Mt

P

2k
+

Mt

2ρk

[
1 +

1
2
γ(γ − 1)M2

t

]
(p′d′−ρε), (12)

where u is the r.m.s velocity fluctuation, c is the speed
of sound and γ is the ratio of specific heats. Finally, in
order to close these equations, a model for the pressure-
strain correlation is needed. It is assumed that the pro-
posed model for φij will be functionally the same as the in-
compressible L.R.R model, except for new coefficients C1,
C3 and C4 that will become a function of the turbulent
Mach number.
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3 Compressible closure for the pressure-strain
covariance

3.1 Literature models

The modeling of the pressure-strain correlation consti-
tutes a more complicated problem of closure, this is due
to the complexity of phenomena that they reflect and to
the role that they play in the mechanism of redistribu-
tion of the energy between the different components of
the Reynolds stress tensor.

The modeling of this tensor must take into account
two different physical mechanisms appearing in the anal-
ysis of the different terms of the Poisson equation for the
fluctuating pressure [13] which is obtained by taking the
divergence of the Navier-Stokes equations. This equation
contains two terms, the first one arises from the mean rate
of strain and its interaction with the turbulence. The sec-
ond term is generated from a mutual interaction between
turbulence components. Models proposed for the pressure-
strain correlation must reflect these two mechanisms, im-
plied in the field of the fluctuating pressure. Thus, mod-
els will constitute a fast part (linear part) and a slow
part which describes the return to the isotropy behaviour
of turbulence. Rotta [14] has developed the first simple
model for the nonlinear part. This model has served as
a cornerstone for the representation of the slow pressure-
strain in a variety of the commonly used second-order clo-
sure such as the Launder, Reece and Rodi model [12].
Subsequent to this work, Lumley [15] has demonstrated
the need for nonlinear terms in models for the slow part
of the pressure-strain correlation and derived a nonlin-
ear representation theorem for this correlation based on
isotropic tensor function theory. The simplest model for
the rapid part is proposed by Rotta [16]. This model is
based on the assumption of isotropy of the coefficients
of the mean velocity gradients. Starting with the work
of Launder et al. [12], anisotropy models for the rapid
pressure-strain correlation have been formulated wherein
the coefficients of the mean velocity gradients are taken
to be functions of the anisotropy tensor. In the Launder
et al. model, the fourth-rank tensor of coefficients is linear
in the anisotropy tensor, whereas most of the newer mod-
els developed during the last decade are nonlinear such as
models proposed by Shih and Lumley [17], Haworth and
Pope [18], Speziale [19] and Launder and Tselepidakis [20].

In compressible turbulence, the modeling of this ten-
sor articulates on the simple extension of models estab-
lished in incompressible turbulence as mentioned in the
works of Adumitroaie et al. [9] and Fujihiro Hamba [21].
To account for the non-vanishing fluctuating dilatation
in compressible flows, Adumitroaie has developed a com-
pressible correction depending on the magnitude of the
turbulent Mach number to the L.R.R model. The effects
of compressibility using the new representation are consis-
tent with DNS results of compressible mixing layers. For
Fujihiro Hamba, the compressibility effect can be repro-
duced in terms of the parameter of normalized pressure
variance. The extension of Fujihiro Hamba for the incom-

Table 1. Initial conditions.

case Mg,0 Mt,0 (Sk
εs

),0 b11,0 b22,0 b12,0

A1 0.22 0.4 1.8 0 0 0
A2 0.44 0.4 3.6 0 0 0
A3 0.66 0.4 5.4 0 0 0
A4 1.32 0.4 10.8 0 0 0

pressible pressure-strain model is directly related to the
pressure variance.

We have already said, that the present work articu-
lates a simple extension of the L.R.R model established
in incompressible situations. In spite of its simplicity,
this model is unable to reproduce relatively correct in-
compressible turbulence behavior, as mentioned in the
asymptotic equilibrium values of the Reynolds stress com-
ponents, the DNS results of Rogers [22] for the incom-
pressible homogeneous shear flow have showed that the
LRR model underpredicts the magnitude of the normal
Reynolds stress anisotropies b11, b22 and b33 by about 26%,
21% and 45% respectively (Tab. 2). On the other hand,
it overpredicts the asymptotic equilibrium value of the
Reynolds shear stress anisotropy by about 15.7%. Al-
though the standard model of L.R.R still needs to be im-
proved to explain incompressible DNS results. The same
model with variable density extension has been extended
to be tested by several authors for compressible homoge-
neous shear flow. Speziale et al. [5,23] have shown that
a variable density extension of the L.R.R model in con-
junction with the compressible dissipation and pressure-
dilatation models of Sarkar [6,7] cannot properly repro-
duce the DNS results of Sarkar et al. [24] of the turbu-
lent kinetic energy for the initial conditions Sk

εs
= 7.18,

Rλ = 15 and Mt = 0.2. and its unable to predict the
dramatic changes in the Reynolds stress anisotropies that
arise from compressibility effects. This can be seen more
clearly in Table 3, where the model predictions for the
equilibrium Reynolds stress anisotropies are compared
with DNS for compressible homogeneous shear flow.

3.2 Extension of the L.R.R model

The study of compressibility effects on the turbulent ho-
mogeneous shear flow behavior made these last years
the objective of several researches; as mentioned in the
works of Blaisdell et al. [25,26], Sarkar et al. [6,7,10],
Adumitroaie et al. [9] and Fujihiro Hamba [21]. The direct
numerical results developed by Sarkar [10] and Fujihiro
Hamba [21] show that the temporal growth rate of the
turbulent kinetic energy (Λ = 1

Sk
dk
dt ) is extensively in-

fluenced by compressibility. Therefore this term could be
our starting point to extend the Launder, Reece and Rodi
model for the pressure-strain correlation to compressible
turbulent flows.

We recall that for homogeneous shear flow, the tem-
poral growth rate of the turbulent kinetic energy is
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Table 2. Comparison of the L.R.R model predictions for the equilibrium Reynolds anisotropies with the DNS results of Rogers
et al. [22] for incompressible homogeneous shear flow.

Equilibrium values Launder, Reece and Rodi model DNS results of Rogers
b11 0.155 0.215
b12 –0.187 –0.158
b22 –0.121 –0.153
b33 –0.034 –0.062

Table 3. Comparison of the L.R.R model predictions (using the dilatational terms of Sarkar [6,7]) for the equilibrium Reynolds
anisotropies with the DNS results of Blaisdell et al. [5] for the compressible homogeneous shear flow.

Equilibrium values Launder, Reece and Rodi model DNS results of Blaisdell
b11 0.166 0.424
b12 –0.187 –0.118
b22 –0.130 –0.236
b33 –0.036 –0.188

defined by:

Λ =
1

Sk

dk

dt
= −2b12 − εs

Sk
+

p′d′

ρ − εc

Sk
. (13)

For a mixing layer, were the turbulence is isotropic,
with the assumption that we can neglect the pressure-
dilatation term and the dissipation anisotropy in the ki-
netic energy equation, Vreman et al. [11] have pointed out
that there is an approximate proportionality between the
growth rate and the diagonal of the rapid pressure-strain
terms:

Λ = β1
φr

11

Sk
= β2

φr
22

Sk
. (14)

Two compressible direct simulations in which the
initial value of turbulent Mach number was set to
Mt=0.1, Mt=0.3 and Sk

εs
=7.1 were performed by Fujihiro

Hamba [21]. The analysis of these results show that Λ nor-
malized by its incompressible value is proportional to φ11

Sk

and φ22
Sk normalized respectively by their incompressible

parts (φ11
Sk )I and (φ22

Sk )I .

Λ

ΛI
�

φ11
Sk

(φ11
Sk )I

�
φ22
Sk

(φ22
Sk )I

. (15)

Sarkar [10] achieved two series of simulations in which
Mt and Mg vary independently. From these series as one
can notice, there is a systematic increase in the magnitude
of the streamwise and transverse anisotropies when the
turbulent Mach number and the gradient Mach number
increase separately

Λ

ΛI
� bI

11

b11
� bI

22

b22
. (16)

It can be deduced that the pressure-strain correla-
tion tensor in homogeneous shear flow is significantly
changed due to compressibility. Let us recall now the com-
ponents of the deviatoric part of the pressure-strain cor-

relation (L.R.R).

φ11 = −ρC1εsb11 +
(

C3

3
+ C4

)
ρkSb12

φ22 = −ρC1εsb22 +
(

C3

3
− C4

)
ρkSb12

φ12 = −ρC1εsb12 +
C2

2
ρkS +

C3 − C4

2
ρkb11S

+
C3 + C4

2
ρkb22S. (17)

Using equation (14) we shall write:

Λ

ΛI
�

φr
11

Sk

(φr
11

Sk )I
�

φr
22

Sk

(φr
22

Sk )I

Λ

ΛI
�

φr
11

Sk − φr
22

Sk

(φr
11

Sk )I − (φr
22

Sk )I
=

φr
11

Sk + φr
22

Sk

(φr
11

Sk )I + (φr
22

Sk )I

Λ

ΛI
� C3b12

CI
3 bI

12

=
C4b12

CI
4 bI

12

.

For homogeneous flow, the Helmoltz decomposition
gives a unique split of the velocity into incompressible
and compressible components, that is u = uI + uc, where
uI

i,i = 0 and εijkuc
k,j = 0. This decomposition permits to

write b12 as follows:

b12 = (1 − χk)bI
12 + χkbc

12,

where bI
12 =

˜u′′Iv′′I

2kI , bc
12 = (ũ′′v′′− ˜u′′Iv′′I)

2kc , χk = kc

k , kI =
˜u
′′I
i u

′′I
i

2 and kc =
˜u
′′c
i u

′′c
i

2 .
According to DNS results of Sarkar [10], the compress-

ibility coefficient χk is weak and the Reynolds shear stress
anisotropy can be rewritten as: b12 � bI

12(1 − χk).
To obtain the compressibility parameter model of χk,

we assume that the time scale of solenoidal field kI

εs
is

nearly equal to that of the dilatational field: kI

εs
= kc

εc
. This

relation according to Sarkar model [6] for compressible dis-
sipation gives: χk = αM2

t

1+αM2
t
. These approximations permit
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to obtain for C3 and C4 the following expressions:

C3 = CI
3

Λ

ΛI

(
1 + αM2

t

)
and C4 = CI

4

Λ

ΛI

(
1 + αM2

t

)
Using equations (14), (15) and (16), we can write:
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�
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(φr
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11
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(φs
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Sk )I
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C1
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1

ΛI

Λ
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P
b12

( εs

P )IbI
12

. (18)

The DNS of Sarkar [10] show that the relative dissipa-
tion εs

P is less affected by compressibility. This permit to

approximate εs

P /
(

εs

P

)I by 1. Then we may write from (18):

C1 = CI
1

(
Λ

ΛI

)2

(1 + αM2
t )

Λ
ΛI can be expressed as follows:

Λ

ΛI
=

2b12[α1Mt − 1]
[−2b12 − εs

Sk ]I
+

εs

Sk

[
(α2 − α)M2

t − 1
]

[−2b12 − εs

Sk

]I
,

this relation can be recast in a more compact form when
we use the Helmoltz decomposition:

Λ

ΛI
=

[
α1Mt − 1
( εs

P )I − 1
+

(α2 − α)M2
t − 1

( P
εs

)I − 1

]
(1 − χk).

Assuming
(

εs

P

)I by its incompressible equilibrium value
(Cε1 − 1)/(Cε2 − 1), we have:

Λ

ΛI
=

1 − aMt − bM2
t

1 + αM2
t

,

the calibration of a and b based on direct numerical sim-
ulations of Sarkar [10] for homogeneous shear flow gives
for C1, C3 and C4 the following expressions:

C1 =
CI

1

1 + αM2
t

(1 − 0.44Mt)2

C3 = CI
3 (1 − 1.5M2

t )

C4 = CI
4 (1 − 0.5Mt).

Application of these corrections allows the pressure-strain
model to be written as:

φij = −CI
1

(1 − 0.44Mt)2

(1 + αM2
t )

ρεsbij + CI
2ρkS̃ij

CI
3 (1 − 1.5M2

t )ρk

[
bikS̃jk + bjkS̃ik − 2

3
bmnS̃mnδij

]

+CI
4 (1 − 0.5Mt)ρk[bikΩ̃jk + bjkΩ̃ik] (19)

where S̃ij = 1
2 ( ∂ũi

∂xj
+ ∂ũj

∂xi
), Ω̃ij = 1

2 ( ∂ũi

∂xj
− ∂ũj

∂xi
),

bij =
˜u
′′
i u

′′
j − 2

3kδij

2k are, respectively, the mean rate
of strain tensor, the mean vorticity tensor and the
anisotropy tensor. The coefficients CI

i come from the
incompressible pressure-strain model.

4 Numerical results

4.1 Initial conditions

The nonlinear ordinary differential equations (7), (8), (9)
and (12) are solved subjects to the initial conditions
(Tab. 1).

The DNS results of Sarkar [10] emphasize the impor-
tance of a new parameter of compressibility noted by Mg,
that can be an important parameter to understand the
compressibility effect on the turbulence. We recall that
the three time scales in homogeneous compressible turbu-
lence : the mean distortion time scale,

τ−1
d = (ũi,j ũi,j)

1
2

(where ũi,j is the mean velocity gradient), the turn-over
time,

τ−1
t =

√
2k

l

(where k is the turbulent kinetic energy and l is the length
scale of the energy containing eddies) and the acoustic
time scale,

τ−1
c =

c

l

(where c is the speed of sound), permit to construct the
turbulent Mach number and the gradient Mach number.
The turbulent Mach number is the ratio of the acoustic
time scale to the turn-over time: Mt = τa

τt
. Sarkar [10],

Durbin and Zeman [27], Cambon et al. [28] and Jacquin
et al. [29] have defined the gradient Mach number Mg

as being the ratio of the acoustic time scale to the mean
distortion time scale: Mg = τa

τd
. The ratio of the gradient

Mach number to the turbulent Mach number noted by
r defines the rapidity of the distortion, for r � 1 (turn-
over time is much larger than the distortion time scale ),
the nonlinear interactions within the turbulence can be
neglected (rapid distortion theory: RDT). Table 1 repre-
sents the initial conditions of the DNS of Sarkar [10] for
homogeneous shear flow, which are considered by their
author outside the application of the rapid distortion the-
ory, because the choice of the integral length scale gives
weak values of Mg and r. The last two simulations A3 and
A4 are examined by Simone et al. [30]. they defined the

gradient Mach number using the length scale l = (2k)
3
2

εs
,

which conducts to large values of (Mg, r) ((6.6, 16.5) for
A3 and (13.2, 33) for A4). From these values they empha-
sized that A3 and A4 correspond to the limit of RDT.

4.2 Discussion

The transport equations (7), (8), (9) and (12)-
incorporating the model of the pressure-strain correla-
tion discussed in section (3)-are solved numerically for
compressible homogeneous shear flow using a fourth-order
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Table 4. Comparison of the present model predictions for the long-time values of the anisotropy tensor for cases A1, A2 and
A3 with the DNS of Sarkar [10] and the formulas of Stefan [31]

Long-time values Present Model DNS of Sarkar Formulas of Stefan
b11 0.342, 0.410, 0.525 0.32, 0.44, 0.51 0.370, 0.447, 0.504
b12 –0.138, –0.125, –0.1 –0.145, –0.12, –0.092 –0.139, –0.114, –0.093
b22 –0.211, –0.236, –0.273 –0.2, –0.24, –0.275 –0.207, –0.240, –0.264

Runge-Kutta numerical integration scheme. Four simula-
tions labelled respectively A1, A2, A3 and A4, are per-
formed. In these simulations the gradient Mach num-
ber Mg,0 increases respectively in cases A1 to A4 by chang-
ing the initial value of Sk

εs
, taking the initial value of Mt

constant (Tab. 1). The DNS data of Sarkar [10] are pre-
sented with circles, squares, triangles and diamonds in
order of increasing Mg,0. First, we will consider model
predictions for the case where there are no corrections
of C1, C3 and C4 in order to assess the performance of
the proposed correction. From the results plotted in Fig-
ures 1, 2, 3 and 4, it is clear that the standard model
in conjunction with explicit dilatational terms proposed
by Sarkar [6,7] is unable to predict the dramatic changes
in the Reynolds stress anisotropies and the pressure-strain
correlation that arise from compressibility. It is also found
that the dilatational terms appear much smaller to reflect
the phenomena of compressibility. The results in figure (1)
as the normalized production term −2b12 versus a dimen-
sionless time t∗ = St; it is clear that there is a decrease in
the magnitude of the normalized production term −2b12

when Mg,0 increases. The effect of compressibility on the
other components is also of interest. Figures 2a-b show
that there is an increase in the transverse and stream-
wise anisotropies from case A1 to A3. As one can remark
that for St = 20, the turbulence eventually evolves to
approximately constant values of the components of the
anisotropy tensor. Contrary to the L.R.R’s model, predic-
tions of asymptotic values by our model, has the same
tendency as the DNS results. This can seen more clearly
from Table 4, where the model predictions for the long-
time values of the anisotropy tensor bij are compared with
those given by the formulas established by Stefan [31]. By
these formulas, the components b11, b12 and b22 are func-
tions of the gradient Mach number:

b11 =
2
3
− 0.4 exp(−0.3Mg)

b12 = −0.17 exp(−0.2Mg)

b22 = −1
3

+ 0.17 exp(−0.3Mg).

Figures 3a, b, c show the historical time of the com-
ponents of the pressure-strain φ11, φ22, and φ12, overall
agreement between the present model and DNS is good. In
Figures 4, the present model predictions for the time evo-
lution of εs

Sk and the relative dissipation εs

P are displayed.
Figure 4b shows that there is an increase in the relative
dissipation when Mg,0 increases. It is clearly seen that the
primary reason of the decrease in εs

Sk ( εs

Sk = −2b12
εs

P ) is
the reduced level of the production term (Fig. 1, Fig. 4b).
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0,5

-2
b 12

Fig. 1. Evolution of normalized production term −2b12 in
cases A1, A2 and A3 for compressible homogeneous shear
flow: Standard model(dots, dashed line, dot-dashed line);
present model (line); DNS results of Sarkar [10] (circle, square,
triangle).
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Fig. 2. Evolution of (a) the streamwise and (b) the trans-
verse Reynolds stress anisotropy in cases A1, A2 and A3 for
compressible homogeneous shear flow.

Figure 5 shows the behaviour of the dilatational terms. It
will be shown that these terms are much smaller to explain
the compressibility effect on the turbulence. Using equa-
tion (13), one can notice that the compressibility effect of
decreased growth rate of turbulent kinetic energy is due
to a decrease of the normalized production term. It will be
shown from cases A1, A2 and A3 that the asymptotic val-
ues of turbulent parameters are highly dependent on the
initial conditions when Mg,0 is changed. This shows that
Mg is an important parameter that describes the level of
stabilizing effect of compressibility. In Figures 6a, b, c, we
present the components of the pressure-strain correlation
for case A4. These results show that the present model pre-
dictions are in disagreement with DNS results of Sarkar.
This disagreement can be explained by:

(i) the standard hierarchy of the pressure-strain mod-
els remind us of a strong approximation for compressible
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Fig. 3. Evolution of the pressure-strain correlation (a) φ11, (b) φ22 and (c) φ12 in cases A1, A2 and A3 for homogeneous shear
flow.
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Fig. 4. Evolution of (a) εs
Sk

and (b) the relative dissipation εs
P

in cases A1, A2 and A3 for homogeneous shear flow.
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Fig. 5. Evolution of the dilatational terms in cases A1, A2 and
A3 for homogeneous shear flow.

flows, where the turbulent Mach number Mt < 0.3 that
does not apply to high-speed compressible flows. While
the DNS of Sarkar for case A4 show that the turbulent
Mach number achieves an equilibrium value of approxi-
mately 0.64.

(ii) using the integral length scale l = (2k)
3
2

εs
, A4 corre-

sponds to the limit of RDT, for this case the rapid redistri-
bution terms are dominant. In the proposed formulation,
C1 is corrected while C2 takes its incompressible value,

thus leads to an extra contribution to the nonlinear part
of the pressure strain-correlation. Therefore, it is interest-
ing to have an open mind in the pursuit of our proposed
approach modeling that appears to be very promising in
predicting the unsteadiness of turbulent structures in A4

of DNS [10].

5 Conclusions

The standard model for the pressure-strain correlation of
L.R.R in conjunction with dilatational terms proposed by
Sarkar yields poor predictions for compressible homoge-
neous shear flow. It was found that the dilatational terms
are much smaller to reflect the correct physics of com-
pressibility. An extension of the Launder, Reece and Rodi
model has been proposed, the coefficients C1, C3 and C4

can be functions of the turbulent Mach number. Applica-
tion of the present formulation on compressible homoge-
neous shear flow has shown a broadly satisfactory agree-
ment with DNS data of Sarkar for cases A1, A2 and A3.
The numerical simulations show that compressibility ef-
fects are highly dependent on the initial conditions when
Mg,0 is varied; it shows that Mg can be a very important
parameter to understand the phenomena of compressibil-
ity. Disagreement between calculations and DNS results
of Sarkar observed in case A4 will be explained by: i)
failure of standard models of the pressure-strain term in
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Fig. 6. Evolution of the pressure-strain correlation (a) φ11, (b) φ22 and (c) φ12 in case A4 for homogeneous shear flow.

high-speed compressible flows. For these flows, the
pressure-strain term must be represented by models tak-
ing explicitly in account the compressibility effects in
compressible turbulence situation. ii) models proposed by
Sarkar for the dilatational terms are valid for small tur-
bulent Mach number, that does not apply for these flows
(case A4). iii) Simone et al. have mentioned that A3 and
A4 correspond to the limit of RDT, consequently the non-
linear interactions within the turbulence can be neglected.
The correction adopted for C1 can generate an elevated
nonlinear part levels which is in contradiction with the
rapid distortion theory.

References

1. G.L. Brown, A. Roshko, J. Fluid Mech 64, 775 (1974)
2. P. Bradshow, Ann. Rev. Fluid Mech 9, 33 (1977)
3. D.W. Bogdanoff, AIAA. J 21, 926 (1983)
4. D. Papamoschou, A. Roshko, J. Fluid Mech 197, 453

(1988)
5. C.G. Speziale, R. Abid, N.N. Mansour, Icase Report No.

17, 1994
6. S. Sarkar, G. Erlebacher, M. Hussaini, H.O. Kreis, J. Fluid

Mech 227, 473 (1991)
7. S. Sarkar, Phys. Fluids. A 4, 2674 (1992)
8. O.Zeman, Phys. Fluids. A 2, 178 (1990)
9. V. Adumitroaie, J.R. Ristorcelli, D.B. Taulbee, Phys.

Fluids A 9, 2696 (1999)
10. S. Sarkar, J. Fluid Mech 282, 163 (1995)
11. A.V. Vreman, N.D. Sandham, K.H. Lulo, J. Fluid Mech

320, 235 (1996)

12. B.E. Launder, G.J. Reece, W. Rodi, J. Fluid Mech 68, 537
(1975)

13. C.G. Speziale, S. Sarkar, B. Gatski, J. Fluid Mech 227,
245 (1991)

14. J.C. Rotta, Z. Phys 129, 547 (1951)
15. J.L. Lumley, Adv. App. Mech 18, 123 (1978)
16. J.C. Rotta, AGARD-CP-93-NATO (1972)
17. T.H. Shih, J.L. Lumley, Cornell University Technical

Report No. 85, 1985
18. D.C. Haworth, S.B. Pope, Phys. Fluids 29, 387 (1986)
19. C.G. Speziale, Q. Appl. Maths 45, 721 (1987)
20. B.E. Launder, D.P. Tselepidakis, J. Fluid Mech 183, 63

(1987)
21. Fujihiro Hamba, Phys. Fluids 11, 1624 (1999)
22. M.M. Rogers, P. Moin, W.C. Reynolds, Standard

University Technical Report No. 25 (1986)
23. C.G. Speziale, S. Sarkar, Icase Report No. 91 (1991)
24. S. Sarkar, G. Erlebacher, M. Hussaini, Theor. Comput.

Fluid Dyn. 2, 291 (1991)
25. G.A. Blaisdell, N.N. Mansour, W.C. Reynolds, J. Fluid

Mech. 256, 443 (1993)
26. G.A. Blaisdell, G.N.Coleman, N.N. Mansour, Phys. Fluids

A 8, 2692 (1996)
27. P.A. Durbin, O. Zeman, J. Fluid. Mech 242, 349 (1992)
28. C. Cambon, G.N. Coleman, N.N. Mansour, J. Fluid. Mech

257, 641 (1993)
29. L. Jacquin, C. Cambon, E. Blin, Phys. Fluids. A 10, 2539

(1993)
30. A. Simone, G.N. Coleman, C. Cambon, J. Fluid Mech.

347, 37 (1997)
31. H. Stefan, Statistical Mechanics of Turbulent Flows

(Springer, Verlag Berlin, 2003)


